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The spin Hall and longitudinal conductivity of a two-dimensional �2D� heavy-hole gas with k-cubic Rashba
and Dresselhaus spin-orbit interaction is studied in the ac frequency domain. Using Kubo linear-response
theory and a recently proposed definition for the �conserved� spin current operator suitable for spin-3/2 holes,
it is shown that the spin conductivity tensor exhibit very distinguishable features from those obtained with the
standard definition of the spin current. This is due to a significant contribution of the spin-torque term arisen
from the alternative definition of spin current which strongly affects the magnitude and the sign of the dynamic
spin current. In the dc �free of disorder� limit, the spin Hall conductivity for only �or dominant� k-cubic Rashba
coupling is �xy

s,z�0�=−9e /8�, whereas �xy
s,z�0�=−3e /8� for only �or dominant� k-cubic Dresselhaus coupling.

Such anisotropic response is understood in terms of the absence of mapping the k-cubic Rashba↔Dresselhaus
Hamiltonians. This asymmetry is also responsible for the nonvanishing dc spin Hall conductivity ��xy

s,z�0�
=−6e /8�� when the Rashba and Dresselhaus parameters have the same strength, in contrast with its corre-
sponding case for electrons. These results are of relevance to validate the alternative definition of spin current
through measurements in the frequency domain of the spin accumulation and/or spin currents in 2D hole gases.
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I. INTRODUCTION

Nowadays spintronics research is devoted to great extent
to the study of fundamental issues concerning how to gener-
ate, manipulate, and detect spin currents in a controlled and
efficient way.1 In particular, spin currents can be generated in
solid state systems through the spin Hall effect �SHE�,2–4 a
relativistic spin-orbit interaction �SOI� phenomenon that
converts an electrical voltage into a pure spin current. The
SHE is a result of a spin-dependent scattering from charged
impurities through side jump and/or skew processes5 due to
spin-orbit coupling �extrinsic SHE�.2,3 It can be generated
also in bulk and heterostructures due to built-in fields that
modifies the band structure via the SOI �intrinsic SHE�.6,7

The SHE has been inferred by optical means via the spin
Hall accumulation at the edges of a doped �n-type� semicon-
ductor channel,8,9 as well as in two-dimensional �2D�
�p-type� hole gases �2DHGs�.10 It has been also detected
electrically in metals throughout its reciprocal effect, the in-
verse SHE �Refs. 11–13�—the generation of a charge current
by a transverse spin current in materials with SOI.14 Recently
evidence of a rather large spin Hall signal �2.9 m�� at room
temperature in FePt/Au multiterminal devices exhibiting sig-
nificant skew scattering processes has been also observed.15

Most recently, Brüne et al.16 reported the first electrical mea-
surement and manipulation of the intrinsic SHE using ballis-
tic HgTe semiconductor nanostructures observing even larger
spin Hall signals of the order of few k�.

Theoretically, the intrinsic dc spin Hall conductivity in 2D
electron systems with k-linear Rashba and/or Dresselhaus
type of SOI is known to be suppressed by weak �nonmag-
netic� disorder by the appropriate inclusion of vertex
corrections.17 However such cancelation does not hold in the
presence of magnetic fields and/or magnetic impurities.18,19

Furthermore, the vertex corrections are in fact identically

zero in 2D-hole systems with k-cubic Rashba,20 2D k-cubic
Dresselhaus electron systems,21 and Luttinger
Hamiltonians,22,23 for which the spin-Hall conductivity is
shown to be robust against disorder. This holds however as
long the standard definition of spin current is used.24

A basic issue in spin transport theory is the use of an
appropriate definition of spin current for systems in which
the spin is not a conserved quantity. The standard definition
of the spin current operator for spin-1/2 particles is the ex-
pectation value of the anticommutator of the velocity and
spin operators, Js= ��4 ��z , v̂��, where �z is the Pauli spin z
component and v̂ is the electron velocity operator, respec-
tively. This definition has the appealing form that resembles
the usual charge-current operator, and in addition, for spin-
polarized systems, it yields to the expected difference be-
tween the spin-up and spin-down charge currents. However,
the conventional definition of spin current operator has a
caveat; it is not conserved in systems with SOI, rendering it
incomplete in describing a true “spin current.”25,26

Recently Shi et al.27,28 introduced an alternative definition
of spin current which circumvents the latter issue. The pro-
posed definition for the effective spin current operator is de-
scribed by the time derivative of the spin displacement op-
erator, which for spin-1/2 carriers is simply given by

Ĵsz= �
2

d�r̂�z�
dt . The alternative definition adds to the conven-

tional part Js, a spin source term �torque dipole density P��
associated to the electron spin precessional motion. In this
way the total effective spin current density can be defined as

Js=Js+P�, with Js=Re �†Ĵsz�. Most important, such ef-
fective spin current definition straightforwardly satisfies the
continuity equation �Sz /�t+� ·Js=0, with Sz= �

2�
†�z� de-

scribing the spin density. It is also possible to establish an
Onsager relation between the spin transport coefficients and
the mechanical or thermodynamical force-driven transport
coefficients. In addition, it vanishes for localized orbitals,
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predicting the expected zero spin Hall conductivity for
insulators.28

Using the conserved spin-current operator of Ref. 27,
Chen et al.29 predicted that the dc value of the spin Hall
conductivity for linear Rashba and Dresselhaus SOI models
has an opposite sign to that obtained using the conventional
definition. Sugimoto et al.30 also studied the SHE and the
conditions for nonzero spin Hall currents using the con-
served current definition for both, linear and cubic Rashba
models. Subsequently, we explored �Ref. 31� the spin Hall
conductivity for 2D electron gases with competing k-linear
Rashba and Dresselhaus SOI in the ac frequency regime.
There we have highlighted the contrasting results when
the conserved spin current operator is applied to two-
dimensional electron gases �2DEGs�. Most recently, Chen
et al.32 investigated the spin torque and spin Hall currents in
generic 2D spin-orbit Hamiltonian Hso=A�k��x−B�k��y also
using the conserved spin-current operator and found that re-
gardless of the detailed form of the energy dispersion �i.e.,
A�k� and B�k� coefficients�, the conserved static ��=0� spin
Hall conductivity changes its sign with respect to the con-
ventional spin Hall conductivity.

In this paper, using the definition for the spin-current op-
erator reported by Shi et al.27 we explore the behavior of the
frequency dependent spin �Hall� ��	

sz ��� and of the charge
conductivity tensor ��	

ch ��� for a 2DHG with k-cubic Rashba
and Dresselhaus SOI. We show that the optical spectrum of
the spin conductivity exhibit remarkable changes when this
new definition of spin current is applied. A rather large re-
sponse of the spin Hall conductivity is predicted to arise
when using the conserved definition of spin current operator
owing to a dominant contribution of the spin-torque term. In
particular, we predict that the magnitude and sign of the dy-
namic spin current strongly depends on the electric field fre-
quency as well as with the interplay of the Rashba and
Dresselhaus spin-orbit coupling strengths. Such behavior is
similar to that reported in 2DEGs;31 however, unlike the later
case, which gives vanishing SHE ��SH���=0� when the
Rashba and Dresselhaus parameters have the same strength,
a rather finite spin conductivity ��SH����0� is obtained in
general for the case of heavy holes. Useful analytical expres-
sions for the charge and spin �Hall� conductivities as a func-
tion of the frequency can be derived in the common limit

so /
F�1, being 
so the characteristic spin-orbit energy and

F the Fermi energy of the heavy holes. Interestingly, a
straightforward connection between spin and charge conduc-
tivities can be established in such limit.

The remaining of the present work is organized as fol-
lows. In Sec. II the Hamiltonian model for a 2DHG in the
presence of both, k-cubic Rashba and Dresselhaus SOI is
described. The main features of the frequency-dependent
Kubo formula in linear response and its application to the
spin-Hall conductivity are presented in Sec. III. We offer a
discussion on the connection between the spin and charge
conductivities in Sec. IV. Section V is devoted for the dis-
cussion of the numerical results. We conclude in Sec. VI, and
finally, in Appendixes A and B, we outline the derivation of
the spin-current-charge-current correlation function and the
longitudinal spin conductivity, respectively.

II. HAMILTONIAN MODEL

We are interested to model spin �Hall� transport in 2DHGs
formed in III-V semiconductor quantum wells with a rela-
tively strong confinement potential ��kz

2��k2�. In such sys-
tems, the resulting large splitting of heavy hole �HH� and
light �LH� hole bands are expected to yield fully filled LH
states, as reported in recent experiments.10 Hence the rel-
evant contribution to the charge and spin conductivity at the
Fermi energy arises from the HH bands alone. In such
case we can describe the two-dimensional single particle
�spin-3/2� hole system by the effective Hamiltonian

H =
p2

2m�
+ HR + HD, �1�

where m� is the effective mass for the HHs, and we have
included the two most likely dominant SOI terms; namely,
the k-cubic Rashba and Dresselhaus spin-orbit coupling for
HHs.33,34 In Eq. �1� the term HR denotes the Rashba spin-
orbit coupling which arises from the structural inversion
asymmetry �SIA� of the hole confining potential. It is given
by35

HR =
i

�3 ��+p−
3 − �−p+

3� , �2�

with, p�= px� ipy, px,y being the components of the 2D mo-
mentum operator, ��= ��x� i�y� /2, where �x,y are the usual
spin Pauli matrices, and  specifies the electrically tunable
Rashba SOI parameter for HHs. Values of the order of
10−22 eV cm3 for  have been found in GaAs-AlGaAs quan-
tum well samples with heavy-hole densities between
1.8�1010–4.2�1010 cm−2.36

The third term in Eq. �1�, HD, is the Dresselhaus spin-
orbit interaction for HHs which can be described by37

HD = −
�

�3 ��+p−p+p− + �−p+p−p+� . �3�

This term originates from the bulk-induced inversion
asymmetry �BIA� of zinc-blende semiconductor structures.
The spin-orbit parameter � which is fix for a given
system can be estimated through the expression,
�=3�0��pz

2��Eg+Eso� /EsoEhl, where � is the BIA �Dressel-
haus� parameter and �0 is the Luttinger constant �within the
spherical approximation, �2	�3=�0�. The energy param-
eters are as follows: Eg is the fundamental gap, Ehl and Eso
are the HH-LH energy gap and the split-off–light-hole en-
ergy gap, respectively, all at the quantum well region. For a
GaAs-based quantum well of 100 nm of width, � is numeri-
cally estimated to be on the order of 10−22 eV cm3. The
Dresselhaus term �Eq. �3�� was earlier introduced by Bulaev
and Loss37 in a study of spin relaxation and decoherence in
quantum dots in perpendicular magnetic fields. The impor-
tance of the k-cubic SOI related terms in the spin-splitting of
the subband spectrum of HHs in quantum wells was first
noticed by Rashba and Sherman.38

The eigenstates for the full Hamiltonian �Eq. �1�� are
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�k,��r�� =
eik·r

�2A
� 1

�ei�2�−��  , �4�

with k= �kx ,ky�= �k cos � ,k sin �� in polar coordinates,

�=tan−1 �kx−�ky�
�ky−�kx�

, A is the area of the system, and

�� �+1,−1� denotes the pseudospin �3 /2 HH branch. The
energy spectrum is cubic in k and it is given by


� =
�2k2

2m�
+ �����k3, �5�

���� = �2 + �2 − 2� sin�2�� . �6�

Notice that, in spite of the obvious difference in the spin-
orbit Hamiltonian between electrons �linear in k� and heavy-
holes �cubic in k� in 2D systems, the angular anisotropy in
the energy spectrum introduced by the expression ���� ac-
quires formally an identical algebraic form to that for
electrons.31,39 Nevertheless, the k-cubic spin splitting of the
HH spin branches, 
+�k�−
−�k�=2����k3, reveals already
rather distinct features than the case for electrons as dis-
cussed below in more detail.

Following Schliemann and Loss,40 for a given Fermi en-
ergy EF and vanishing temperature, the two dispersion
branches 
��k� produces two �spin-dependent� Fermi wave
numbers kF,���� which can be written compactly as

kF,���� =
kF

�2
��4u − 3u2 − �u

�u�2 − u�
 , �7�

u���=1−�1−2�2����, with ����=�2��� / �2+�2�, �
=
so /
F, and 
so=�2+�2kF

3 is the characteristic spin-orbit
energy.40 The Fermi energy for vanishing spin-orbit coupling
is estimated as 
F=�2kF

2 /2m�, with Fermi wave number
kF=�2�nh and nh is the heavy-hole density concentration.

Now, in the presence of an oscillating electric field
of frequency � the allowed direct transitions between
the HH spin branches 
��k ,�� should satisfy the equation

+�k ,��−
−�k ,��=��, which for a fixed photon energy, de-

fines a elliptical curve Cr��� in the rotated k̃ space described
by the equation

k̃x
2�k̃x

2 + k̃y
2�2

ka
6 +

k̃y
2�k̃x

2 + k̃y
2�2

kb
6 = 1, �8�

with semiaxis of lengths ka
3���=�� /2
−�
 and

kb
3���=�� /2
+�
 oriented along the principal axes �1,1�

and �−1,1� of the reference k space �Fig. 1�. The symmetry
points ka,b��� are given by ka���=kF,−�� /4� and
kb���=kF,+�3� /4�. From this equations two characteristic
energies are determined,

��a = 2
 − �
kF
3�1 +

m�kF

�2 
 − �
3

, �9�

��b = 2
 + �
kF
3�1 −

m�kF

�2 
 + �
3

. �10�

additionally, another two absorption frequencies can be iden-
tified, namely,

��� = 2
 � �
kF
3�1�

m�kF

�2 
 � �
3

, �11�

which corresponds to transitions between states at the points
ka���=kF,+�� /4� and kb���=kF,−�3� /4�, respectively. These
four characteristic frequencies above will play an important
role in the overall response of the charge and spin �Hall�
conductivities as we shall discuss later.

III. SPIN CONDUCTIVITY IN THE FREQUENCY
DOMAIN

Consider a weak and spatially homogeneous electric field
E���ŷ oscillating with frequency � in the plane of the
2DHG. Within the linear-response theory, the frequency-
dependent spin conductivity describing a z-polarized spin
current flowing in the 	=x ,y direction can be characterized
by the Kubo formula40

�	y
sz ��� =

e

�A�̃
�

0

�

ei�̃t�
k,�

f�
��T=0��k,��r�
�Ĵ	
sz�t�, v̂y�0��

�
�k,��r��dt , �12�

where e=−
e
 is the hole electric charge. Here we have as-
sumed noninteracting carriers with f�
�� the Fermi-Dirac
distribution function �in the limit of zero temperature� and
�̃=�+ i�. The vanishing parameter ��0 is just an artifact to
regularize the integral and guarantee causality properties of
the Kubo formula.40 However, phenomenologically it can be
understood as a measure of the hole momentum dissipation
effects due to impurity scattering events, phonons, or any
other many-body interactions effects. In this way, �−1=� will
represent here a finite lifetime of the �spin-orbit coupled�
quasiparticles due to scattering with holes.41

We remark here that instead of employing the conven-
tional spin current operator in the Kubo formula, we have
employed the alternative �conserved� spin current operator
introduced by Shi et al.27 written in the interaction picture,

k
y

k
x

C
r
(ω

1
)

C
r
(ω

2
)

k F,+
(θ)

k F,-
(θ)

FIG. 1. �Color online� Fermi contour kF,���� showing the angu-
lar anisotropy of the spin-split heavy-hole bands of a 2DHG with
k-cubic Rashba and k-cubic Dresselhaus spin-orbit interaction. The
dotted Cr��� curve results from the condition 
+�k�−
−�k�=��,
see text for details.
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Ĵ	
sz�t�. The conserved spin current operator for HHs in the

Schrödinger picture is defined by Ĵ	
sz= 3�

2
d�r̂	�z�

dt , where the
prefactor 3/2 comes from the projection of the total angular
momentum of the HH states along the growth direction.28 To

obtain explicitly Ĵ	
sz�t� we first take the 	 component

�	=x ,y� of the current operator with a spin moment polar-
ized along the z axis at time t=0 �via Heisenberg equation of

motion�, yielding the operator Ĵ	
sz�0�= Ĵ	

c�0�+ Ĵ	
��0�, where

Ĵ	
c�0� =

3�

4
��z,

p	
m�� �13�

is just the conventional spin-current operator definition and

Ĵ	
��0� =

3�

4
��y,

P	x

m� � −
3�

4
��x,

P	y

m� � �14�

represents the spin-torque contribution to the
spin-current operator, being P		�= �	 ,�	�� with �x

=m��py�3px
2− py

2�−�pxp
2� /�4 and �,� denoting the anticom-

mutator. To get �y simply replace px→py and py→px �see
Appendix A�. Note that in the absence of SOI, the operator
P	,	�=0, and the total spin-current operator reduces trivially
to the conventional form �13�. The effective spin current op-
erator is then expressed in the interaction picture,

Ĵ	
sz�t�=eiHt/�Ĵ	

sz�0�e−iHt/� which allows us to calculate the
spin-current–charge-current correlation function of the Kubo
formula once the single-particle operator of the carrier veloc-
ity v̂y�0� is obtained �see Appendix A�. After some straight-
forward algebraic manipulations, it is then possible to ex-
press the frequency dependent spin conductivity as the sum
of two terms, namely,

�	y
sz ��� = �	y

c ��� + �	y
� ��� , �15�

where the first term to the right, �	y
c ���, comes from the

conventional part of spin-current definition and it is given by

�	y
c ��� = −

3e

4�2m��
0

2�

d�g	���
cos �

�
�

kF,+

kF,−

dk
k4

�k
2 − �̃2 ,

�16�

with g	���= ��2−2−2����2���	x cos �+�	y sin ��, where
�		� is the usual Kronecker delta and �k=2�k3 /�. The sec-
ond term in Eq. �15� arises from the spin-torque contribution
to the net spin current and reads as

�	y
� ��� =

6e

�2�2m��
0

2�

d�g	���cos ���
kF,+

kF,−

dk
k10

��k
2 − �̃2�2 .

�17�

The k integrals in expressions �16� and �17� can be calculated
exactly, however they lead to rather cumbersome expressions
and shall not be given here. In general, for the case
 ,��0, the � integrals cannot be performed straightfor-
wardly and a numerical integration has to be implemented.
For a pure Rashba ��=0� or Dresselhaus �=0� system, the
angular dependence of the integrand above reduces signifi-
cantly, leading, e.g., to a vanishing longitudinal spin conduc-
tivity. Although the transverse spin �Hall� conductivity yields

close analytic form for �xy
c ��� and �xy

� ���, the resulting ex-
pressions still somewhat complicated making almost impos-
sible to retrieve any valuable physical insight from them.
Thus, before going into the numerics, and in order to make
progress understanding qualitatively the physics here, it is
useful to consider first the behavior of the spin conductivity
in the limit 
so /
F�1. This is a reasonable limit which holds
typically in 2DHGs in III-V based semiconductor hetero-
structures and for which analytical formulas of the
frequency-dependent spin conductivity can be derived. From
Eqs. �16� and �17�, we obtain to leading order in 
so /
F��,

�	y
sz,0��� 	 �	y

c,0��� + �	y
�,0��� + O��3� , �18�

where the dominant contribution from the conventional part
of the spin Hall �	=x� reads �see Appendix B for 	=y�

�xy
c,0���

9e/8�
=

1

3�2 +

2�2�̃2 + �
�

��

�
�

���
2 − �2�̃2�1/2� , �19�

��=2�+���kF
3 , while leading contribution of the spin-

torque can be written in the form

�xy
�,0���

9e/8�
= − 2

�xy
c,0���

9e/8�
−

2

3
G��� , �20�

where we have defined the auxiliary function,

G��� =
�2�̃2

�
�

���
2 − �2�̃2�1/2

��2 −

�2�2�̃2 + �
�

�����2�̃2 − 4
so
2 �

�
�

���
2 − �2�̃2� � . �21�

It is illustrative to study the behavior of the spin-Hall con-
ductivity in the static limit ��=0�. In the presence of weak
disorder, it must be analyzed comparing the characteristic
spin-orbit energy 
so with the energy scale of the impurity
scattering �� �related to the time-relaxation rate � as
�=�−1� by taking into account both limiting cases, 
so���
and 
so���. Assuming first that the impurity scattering
dominates over the spin-orbit coupling, we expand Eqs. �19�
and �20� in powers of 
so /���1. To lowest order we get

�xy
c,0�0�

9e/8�
	

4

3
�2
so

2 + 
R
2 − 
D

2

�2�2  , �22�

while �xy
�,0�0�=0, with 
R=kF

3 and 
D=�kF
3 .

On the other hand, if the impurity scattering is weak com-
pared to the spin-orbit coupling �
so /���1�, we obtain to
second order
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�xy
c,0�0�

9e/8�
	

2

3
+

1

3
sgn�2 − �2��1 −

�2�2


so
2

R
4
 , �23�

with a nonzero torque part,

�xy
�,0�0�

9e/8�
	 −

4

3
−

2

3
sgn�2 − �2��1 −

�2�2


so
2

R
2
 , �24�

where we have defined the dimensionless parameter R
= �2+�2��32−�2� / �2−�2�2. The above expressions for
�xy

c,0�0� reduces, in each limit case, to the known formulas for
�=0 �only cubic-Rashba� reported in Ref. 40.

Moreover, note that at zero frequency and for ultraclean
��→0+� samples, i.e., for �̃→0+ i0+, the function
G���→0, which in turn simplify Eq. �20� to
�xy
�,0�0�=−2�xy

c,0�0�. Thus, the torque-dipole contribution
makes the total spin-conductivity, �xy

sz,0�0� to change its sign
with respect to the conventional result. It can be shown that
this relationship is valid as well for the longitudinal spin
conductivity, �yy

�,0��� in the same limit. From Eqs. �18�, �23�,
and �24� the static value of the spin Hall conductivity for the
2DHG �free of disorder� takes the universal form

�xy
sz �0� = �− 9e/8� for 2 � �2

− 6e/8� for  = �

− 3e/8� for 2 � �2.
� �25�

In contrast with the 2DEG case,31,42 Eq. �25� predicts a non-
vanishing dc spin-Hall conductivity �−6e /8�� when the
spin-orbit parameters,  and �, have the same strength.
There is also an asymmetry of the dc spin Hall conductivity
depending whether 2��2 or 2��2, unlike its counterpart
for electrons in the clean limit. We obtain �xy

sz �0�=−9e /8�
for �=0 while �xy

sz �0�=−3e /8� for =0, in striking differ-
ence to the analogous for electrons where �e /8� is ob-
tained, respectively.

It is known that for a 2DEG in presence of Rashba and
�linear� Dresselhaus SOI, with spin-orbit parameters e and
�e, respectively, the operator S= ��x��y� /�2 provides an
additional conserved quantity when e=��e since the
Rashba and Dresselhaus SOI Hamiltonians for electrons
commute with S in such case.43 This symmetry leads to
k-independent spin states which in turn yields a suppression
of the spin Hall effect at e=��e. For a 2DHG with cubic
Rashba and Dresselhaus SOI the scenario is completely dif-
ferent since such symmetry is forbidden for =��. Indeed,
the operator S does not commute with the 2DHG Hamil-
tonian with cubic Rashba and Dresselhaus SOI �incidentally
this only occurs for py =0 which yields no spin Hall effect�
leading in general to k-dependent spin states �see Eq. �4��.
Therefore a nonzero response is expected for the heavy-hole
spin Hall conductivity even for =��. Alternatively, for
electrons the unitary transformation �x→−�y, �y→−�x, and
�z→−�z makes the Rashba and Dresselhaus couplings to be
interchanged, along with a change in sign of the spin current,

Js
z→−Js

z.44 This symmetries explains why the spin Hall con-
ductivity only differ by a sign depending upon the competi-
tions of both strengths, as well as its suppression at the sym-
metry point e=��e. However, for cubic-Rashba �Eq. �2��
and cubic-Dresselhaus �Eq. �3�� SOI there is no a mapping of
one Hamiltonian to the other �the symmetry above for elec-
trons is broken here�, and thus, the dc spin Hall conductivity
is asymmetric depending upon the relative ratio between 
and �. As we will see below, the ac spin Hall conductivity
for heavy holes is also finite for =��.

Furthermore, in the ac domain ���0� it can be demon-
strated that the torque spin Hall conductivity �Eq. �20�� is
related to the conventional spin Hall conductivity �Eq. �19��
through the relation �xy

� ��̃�=−�2+ �̃� /��̃��xy
c ��̃�, in agree-

ment with Ref. 32. This relation does not hold however for
the longitudinal �along the driving field� spin conductivity.
Moreover a spin current can be generated along the driving
field direction as long the system is submitted to a nonzero
Dresselhaus SOI as has been previously reported for
electrons.42

IV. CONNECTION BETWEEN CHARGE AND SPIN
CONDUCTIVITIES

In a 2DHG subject to an oscillating electric field, the
driven electric current is described by the charge current con-
ductivity tensor  	y���=�	y�D���+�	y

ch���, in which
�D���= ine2 /m��̃=�o / �1− i���, is the dynamic Drude con-
ductivity, with �o=ne2� /m� as the static Drude conductivity
and �	y

ch��� is the contribution due to inter spin-split induced
transitions. Within the linear-response Kubo formalism, fol-
lowing a similar procedure to previous section, the spin-orbit
induced contribution to the charge current conductivity takes
the form

�	y
ch���

e2/2��
=

2i

�2�̃�3�
0

2�

d�h	���
cos �

�
�

kF,+

kF,−

dk
k8

�k
2 − �̃2 ,

�26�

where h	���= ��	x sin �−�	y cos ���2�2+2−�2�2. Note
that, as it occurs with the dynamic Drude conductivity, the
model leads to a charge current conductivity which is singu-
lar for the simultaneously clean ��→0� and zero-frequency
limit. Although for  ,��0 the k integrals in the above ex-
pression are elementary, the subsequent integrals in � do not
have an analytical solution. It is then illustrative to examine
the limit ��1 to obtain analytical expressions of �	y

ch���. It
can be shown that for  and � different from zero, the charge
conductivity can be related to Eq. �19� for �xy

c,0��� and
�yy

c,0��� �see Appendix B� as

�xy
c,0���

9e/8�
= A���� i�yy

ch,0���
e2/2��

−
�32 + �2�kF

6

��̃
F
 , �27�

�yy
c,0���

9e/8�
= A����− i�xy

ch,0���
e2/2��

+
2�kF

6

��̃
F
 , �28�

A���= �4 /3���̃
F�2�2�̃2+�����−1. From the equations
above it follows that the longitudinal spin conductivity can
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be determined through the �transverse� charge Hall conduc-
tivity induced by the SOI. A similar situation occurs for the
spin Hall conductivity, which in turn can be written in terms
of the longitudinal charge conductivity. Such connection can
be simply interpreted as a manifestation of the inverse SHE.
It can also be viewed as a consequence of the existence of a
charge imbalance in the sample due to a mean SOI induced
transverse force in the �anisotropic� k-cubic Rashba-
Dresselhaus hole system, as recently predicted to occur in
such systems by Chen et al.45 The latter implies the presence
of a finite Hall voltage �transverse charge conductivity� in
the absence of magnetic field and as long an electric field is
present in the SOI system. As the electric field E��� is as-
sumed here along the y direction, the total spin current is
given by Jsz���= ��xy

sz ���x̂+�yy
sz ���ŷ�E���. Thus from Eqs.

�19�, �20�, and �27�, the spin conductivity tensor and the spin
current can be obtained, in principle, through the measure of
the charge conductivity within the frequency domain alone.
We believe that this may provide an electrical method to
detect heavy holes spin currents in presence of k-cubic
Rashba and Dresselhaus SOI.

V. NUMERICAL RESULTS AND DISCUSSION

We start our discussion of the numerical results by con-
sidering the isotropic case first, i.e., when only one type of
SOI, Rashba ��=0� or Dresselhaus �=0�, is present. We
considered a 2DHG formed in a GaAs-AlGaAs quantum
well with a heavy-hole effective mass of m�=0.51mo and a
moderated sheet hole density of nh=3�1011 cm−2; here mo
is the free electron mass. For this system, the Rashba param-
eter has been calculated46 to be =7.48�10−23 eV cm3,
which gives rise to a HH spin-splitting at the Fermi energy of
�R=2kF

3 	0.38 meV. The Fermi wave number for vanish-
ing SOI is estimated from kF=�2�nh. The parameter de-
scribing the momentum relaxation rate has been chosen such
that ��=0.035 meV, value that would corresponds to
samples with mobilities �	e� /m�	20 m2 /V s and relax-
ation times of �	118 ps.

In Fig. 2 we plot the numerical integration of the real part
of the spin-Hall conductivity against the frequency of the
applied electric field, namely, expressions �15�–�17� for the
case with only Rashba SOI ��=0�. The short-dashed �green�
line depicts the conventional term of spin Hall conductivity,
�xy

c ���. It shows a resonancelike behavior at the energy
��+	2kF,+

3 and a Fano-like behavior at ��−	2kF,−
3 ,

which from Eq. �11� they would correspond to the minimum
and maximum photon energies required to induce optical
transitions between the initial �=+1 and final �=−1
pseudospin-3/2 split branches �see Fig. 1�. At low frequen-
cies it approaches the universal value 9e /8�, while it van-
ishes for high frequencies ����R /��. Because of the finite
value of the damping parameter �, the spectrum has a some-
what smoothed shape.

The torque dipole contribution �xy
� ��� large-dashed �red�

lines shows a rather different behavior. It develops a strong
resonance at ��	�R as well as near the frequencies ��. At
low energies, the torque contribution approaches to the value
−2�9e /8��, and as a result, the total spin Hall conductivity

changes its sign relative to the conventional result reaching
the value −9e /8� in the static limit. In general, we notice
that the frequency-dependent torque-dipole response domi-
nates the shape of the spectrum of the total spin Hall con-
ductivity and consequently, a dramatic change in the overall
shape of the spectrum �xy

sz ��� is observed. Such large effect
of the inclusion of the torque term in the new definition of
the spin current has been also reported to occur in 2DEG
with Rashba and Dresselhaus SOI.31 The inset of Fig. 2
shows a comparison of the spin conductivities between the
case with �=0 �=7.48�10−22 eV cm3� and the opposite
case, i.e., =0 �with �=7.48�10−22 eV cm3� case. Qualita-
tively, they share essentially the same spectral features but
with a clear difference in the intensity for the central peak. In
the dc limit, the effective spin Hall conductivity for the sys-
tem with �0 and �=0 converges to −9e /8�, whereas for
the case with =0 and ��0 it reaches the constant value
−3e /8�. Such asymmetric response is expected due to the
formally nonequivalent k-cubic �Rashba and Dresselhaus�
Hamiltonians, in contrast with the case of electrons, where
the Rashba and Dresselhaus Hamiltonians can formally be
mapped into each other, as discussed in Sec. III.

New interesting features appear when the interplay of the
Rashba and Dresselhaus SOI is considered. In Figs. 3�a� and
3�b� we plot the frequency-dependent spin Hall and longitu-
dinal conductivity for �=0.5 �the remaining parameters are
as in Fig. 2�. The results obtained through the approximated
formula �18� and the exact numerical integration of Eq. �15�
are presented for comparison, showing a good agreement,
mostly at low frequencies. Here it is also evident the remark-
able difference between the optical spectrum resulting from
the use of the standard and the conserved spin-current opera-
tor definition, J	

s,z. The physical origin of the main spectral
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FIG. 2. �Color online� Real part of the spin Hall conductivity as
a function of the photon energy �� for a GaAs-AlGAs 2DHG
system with Rashba SOI only ��=0�. The dotted �green� curve is
obtained using the conventional definition of spin-current,
whereas the dashed �red� and solid �blue� curves are the torque
contribution and total spin conductivity, respectively, employing
the conserved spin-current operator. In the inset, the case
with �=0 �=7.48�10−23 eV cm3� is contrasted with the =0
��=7.48�10−23 eV cm3� case. See text for values of remaining
parameter used.
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features can be understood in terms of the anisotropic spin
splitting caused by the simultaneous presence of the Rashba
and Dresselhaus couplings, in an analogous way to that of
the 2DEG case.31,39

In the limit of vanishing temperature, the sum over
states in Eq. �12� is restricted to the region between
the Fermi contours kF,+���!k!kF,−���, for which

+�k ,��!
F!
−�k ,��. The number of direct transitions that
can take place at the energy �� only involve states with
wave vectors that satisfy the equation 
+�k ,��−
−�k ,��
=��. As discussed in the introduction, four distinctive fre-
quencies can be identified given the anisotropic k space
available for the optical response, namely, �a, �b, and ��.

The peaks observed in the optical conductivity �xy
sz ��� of

Fig. 3 correspond to energy transitions ��a,b involving states
in the vicinity of the symmetry points ka���=kF,−�� /4� and
kb���=kF,+�3� /4�, respectively �see Eq. �9��. Similarly, we
can see that there are absorption edges at energies corre-
sponding to transitions between states at the points ka���
=kF,+�� /4� and kb���=kF,−�3� /4�, which would correspond

to the transition energies ���, respectively. For clarity and
to guide the eye, such characteristic energies are indicated in
Fig. 3 with dashed vertical lines. It can also be observed a
large separation between resonances ��b and ��− unlike the
2DEG case.31 Surprisingly, such observation indicates that
there is a larger splitting between the Fermi contours kF,+ and
kF,− along the �−1,1� direction for 2DHGs than for 2DEGs.
The finite value of �� chosen here, besides introducing an
overall smoothing of the spectrum, it also yields to a slight
shifting of the appearance of the peaks in relation to these
�four� characteristic energies. It is clear that the definition of
spin-current operator by Shi et al.27 yields a drastic different
frequency response from that predicted by the conventional
definition. In addition, as it occurs with the pure Rashba �or
Dresselhaus� SOI case, the torque dipole contribution turns
out to be the dominant term in the spin-Hall conductivity.

We have also explored the effect induced of varying the
ratio  /� on the conserved spin conductivity as a function of
the exciting frequency. In particular, in Fig. 4�a� the spin Hall
response is shown for the specific values of  /�=0, 0.5, 1,
and 1.5 while fixing the rest of the sample parameters as in
Fig. 3. Notice that the energy separation of the resonance
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FIG. 3. �Color online� Frequency-dependent spin �a� Hall and
�b� longitudinal conductivities for a 2DHG system with finite
Rashba and Dresselhaus SOI ��=0.5�. The dotted �green� curve
shows the result using the standard definition of spin current, the
case for the conserved spin-current operator J	y

sz in the limit ��1 is
shown in dashed �red� line, and the outcome of the exact numerical
integration of Eq. �15� is shown with solid �blue� lines. Here
��=0.035 meV and other parameters are as in Fig. 2. We identify
four characteristic frequencies, two defining the optical absorption
edges, �− and �+, while the other two correspond to the peaks of
the spin conductivity occurring at �a and �b. The latter two arises
due to the symmetry of the spin-split conduction bands in k space at
the Fermi level.
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FIG. 4. �Color online� �a� Total spin Hall conductivity for dif-
ferent aspect ratios of  /� calculated employing the conserved
spin-current operator Jsz. The parameters are as in Fig. 2. Notice
that the resonance peaks tend to separate in energy as the ratio  /�
is increased. �b� Color contour map of the ac spin Hall conductivity
showing its behavior with a continuous variation in the frequency �
and to the relative ratio  /�.
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peaks becomes larger as the aspect ratio  /� is increased. A
nonzero ac spin Hall conductivity is observed in general for
the =� case, in contrast to the 2DEG which is zero at all
frequencies. It is also appreciated that the resonance frequen-
cies �+ and �b disappear for this case. This can be explained
in terms of the collapse of the Eqs. �9� and �11� at =�. The
latter is due to the overlapping of the spin �3 /2 dispersion
laws, 
+�k�=
−�k�, at kF�=� /4 and at kF�=3� /4, which
occurs precisely at the symmetry point =�. Such effect is
emphasized in Fig. 4�b� where a color map of the spin Hall
conductivity is plotted as a function of a continuous variation
in the ratio  /� and the exciting frequency.

In Fig. 5 we have plotted the �a� longitudinal �	=y� and
�b� transversal �	=x� spin-orbit contribution to the charge
conductivity for a 2DHG system with �=0.5. The dashed
curve corresponds to the plot with expressions in the limit

so /
F�1, while the solid line represent those obtained by
exact numerical integration of Eq. �26�. The results shows a
quite good agreement between both curves for frequencies
smaller than �b. The four main frequencies �+, �a, �b, and
�− are shown here as vertical lines. Interestingly, we have
noticed that these distinctive resonance frequencies, can in
principle, be used to estimate the strengths of the spin-orbit
parameters  and �. This is done as follows. From Eqs. �9�
and �11� assuming 
so /
F�1 and  ,��0 we arrive to the
useful expressions

"� − �� + �"�� − � =
�+ + �a + �b + �−

8�−1kF
3 , �29�

�"� − �� + "�� − � =
�kF

−1

6m�

�+ + �a − �b − �−

�+ + �a + �b + �−
,

�30�

where "�x� is the usual Heaviside step function. Assuming
that such characteristic frequencies can be experimentally
identified, either via the spin-Hall conductivity or from the
charge conductivity tensor measurements, thus the values for
both, the Rashba and Dresselhaus coupling parameters can
simultaneously be estimated from the formulas above. First it
is needed to retrieve if the system has �� or ��. This
can be done by varying a gate voltage to change the heavy-
hole concentration nh, which consequently changes continu-
ously the tunable  parameter.46 Since � does not depend on
the carrier density, then the plot of the right-hand side of Eq.
�29� should give basically a constant output, which inciden-
tally will coincide with value of � if the 2DHG has ��
�see Fig. 6�. Then the value of  is determined through the
expression in Eq. �30�. On the other hand, if a linear behav-
ior of Eq. �29� with nh is observed, this is an indicative that
�� and its value gives an estimate for  for a given nh
concentration. Once  is determined in this regime, the value
of the constant parameter � can be readily obtained from
Eq. �30�.

VI. CONCLUSIONS

In this paper we have examined the spin and charge con-
ductivity in the frequency regime for a 2D heavy-hole gas
with k-cubic Rashba and Dresselhaus SOI employing a re-

FIG. 5. �Color online� Frequency-dependent �a� longitudinal and
�b� transverse spin-orbit contribution to the charge conductivity for
a 2DHG system with k-cubic Rashba and Dresselhaus SOI
��=0.5�. The dashed curves shows the result in the limit ��1,
while the solid curves corresponds to the exact numerical integra-
tion of Eq. �26�. There is a good agreement between both cases for
frequencies lower than �b. The sample parameters are the same as
in Fig. 2. The four main frequencies �+, �a, �b, and �− are shown
as vertical lines to guide eye.

FIG. 6. �Color online� Plot of the sum of the frequencies �+, �a,
�b, and �− in units of 8�−1kF

3 as a function of the heavy hole
concentration, nh. For �� a linear variation with nh is observed,
while for the opposite case ���� an almost uniform behavior is
seen in a wide range of hole concentrations. The latter responds to
the fact that typically  is dependent on the heavy holes density,
while � is not. The dramatic difference of the behavior between the
cases �� and �� as the density is varied can in principle be
used to experimentally estimate the value of the coupling param-
eters. See text for details.
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cently proposed spin current operator. Our results shows that
the optical spectrum of the spin �Hall� conductivity changes
substantially when the conserved spin current operator is
used due to a significant contribution of the spin torque term.
In the dc limit we find that spin Hall conductivity for a pure
k-cubic Rashba is three times the value obtained for
the pure k-cubic Dresselhaus system, �xy

s,z�0�=−9e /8� and
�xy

s,z�0�=−3e /8�, respectively. Such anisotropy �symmetry
breaking� is understood in terms of the absence of mapping
the Rashba↔Dresselhaus Hamiltonians, in contrast with the
case for electrons. It is argued that such asymmetry is also
responsible for the nonvanishing dc spin Hall conductivity
��xy

s,z�0�=−6e /8�� when the spin-orbit Hamiltonians,
Rashba, and Dresselhaus have the same coupling strength. In
the ac limit, it is shown that the magnitude and the sign of
the dynamic spin current is rather sensitive to the frequency
and to the spin-orbit � and �� coupling strengths. The latter
suggests the possibility of the optical manipulation of spin
currents in addition to the control obtained through external
bias. The dramatic differences of the spin Hall conductivity
response predicted here with the use of the conserved spin-
current operator in relation to the calculated with its conven-
tional counterpart, it is clearly a call for the experimentalist
to perform measurements in the frequency domain and vali-
date �or discard� its applicability in describing spin transport.
In addition, we have shown that the angular anisotropy of the
spin-splitting energy induced by the interplay between the
Rashba and Dresselhaus couplings gives rise to four charac-
teristic resonance frequencies, which in principle, can be em-
ployed to estimate the strengths of the spin-orbit parameters
through optical spectroscopy and/or transport measurements.
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APPENDIX A: SPIN-CURRENT-CHARGE-CURRENT
CORRELATION FUNCTION

In this appendix we briefly outline the derivation of the
expectation value for spin-current–charge-current correlation

function ��k,��r�
�Ĵx
S,z�t� , v̂y�0��
�k,��r���F��k , t� appear-

ing in the Kubo formula Eq. �12�. We begin by writing the
carrier velocity operator via the Heisenberg equation of mo-
tion v̂�0�= i

� �H , r̂�. For the 	=y component, the velocity op-
erator reads

v̂y�0� =
1

m��py + �x
��x

�py
+ �y

��y

�py
� , �A1�

where we have defined

�x =
m�

�4 �py�3px
2 − py

2� − �pxp
2� . �A2�

To get �y simply replace px→py and py→px in Eq. �A2�. It
follows trivially that in the absence of SOI, the operator

�x,y =0, and the total velocity operator reduces to the disper-
sionless form py /m�. Next we proceed to calculate the
operators x�t�, �x�t� and �y�t� in the interaction picture,

Ô�t�=eiHt/�Ô�0�e−iHt/�. After some algebraic manipulations,
the position operator reads as

x�t� = x�0� +
t

m��px + �x
��x

�px
+ �y

��y

�px
�

+
�py

2p2

��2 − 2 − 2�2�
�2 K�t� , �A3�

whiles the spin Pauli operators in the interaction picture take
the form

�x�t� = �x�0� +  x�t�, �y�t� = �y�0� −  y�t� , �A4�

here we have introduced the time-dependent operators

 x�t� = m��yL�t� , �A5�

 y�t� = m��xL�t� , �A6�

in which

K�t� =
2

��p
��pt − sin��pt��Rxy − 2 sin2��pt/2��z,

L�t� =
2

��p
�sin��pt��z −

1

��p
Rxy sin2��pt/2�� , �A7�

with Rxy =m���x�y −�y�x� and �p=2�p3 /�4. Note that �x,
�y, p, px, and py are all given in the Schrödinger picture. The
expressions above are needed in the calculation of the com-

mutator �Ĵx
s,z�t� , v̂y�0��, in which the effective spin-current

operator is written in the interaction picture, i.e., Ĵx
s,z�t�

=eiHt/�Ĵx
s,z�0�e−iHt/�. At t=0 we have Ĵx

s,z�0�= Ĵx
c�0�+ Ĵx

��0�,
as given explicitly by Eqs. �13� and �14�. Then the commu-
tator of the velocity operator with the conventional spin cur-
rent reads as

�Ĵx
c�t�, v̂y�0�� =

3�

4
�eiHt/���z,

p	
m��e−iHt/�, v̂y�0�

=
3�

2

px

m���z�t�,
1

m���x
��x

�py
+ �y

��y

�py
� ,

�A8�

whereas the torque spin-current operator yields

�Ĵx
��t�, v̂y�0�� =

3�

4
�eiHt/���y,

Pxx

m� �e−iHt/�, v̂y�0�
−

3�

4
�eiHt/���x,

P	y

m� �e−iHt/�, v̂y�0� ,

�A9�

with P		�= �	 ,�	��. After some algebraic manipulations we
arrive to
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�Ĵx
��t�, v̂y�0�� =

3�

2 �
i

3

�
j

2

��x̂Mi,N j� + �Mix̂,N j��

+
3�

2

2px

m�
t�

i

3

�
j

2

�Mi,N j� , �A10�

with x̂= x̂�0� and the remainder operators are

N1 =
1

m�

��x

�py
�x, N2 =

1

m�

��y

�py
�y , �A11�

M1 =
1

m�
�y cos��pt��x, M2 = −

1

m�
�x cos��pt��y ,

�A12�

M3 = −
��p

2
sin��pt��z. �A13�

Adding up the expectation value of Eqs. �A8� and �A9� with
the aid of Eq. �4�, we finally arrive to a explicit formula for
the spin-current–charge-current function F��k , t�, which is
given by

F��k,t� = 6i
�kx

2 − ky
2�k2�22 + �2�
�

cos��kt�

+ 3i�
�kx

2k��2 − 2 − 2�2�
m��

��cos��kt� − �kt sin��kt�� , �A14�

with �k=2�k3 /� and �=� the pseudospin �3 /2. The result
of Eq. �A14� together with the factor ei�̃t in Eq. �12� leads
expressions exactly integrable in time for the conventional
�Eq. �16�� and torque �Eq. �17�� contribution to the effective
spin Hall effect.

APPENDIX B: LONGITUDINAL SPIN CURRENT

In this appendix we write down useful analytical expres-
sions for the ac and dc longitudinal spin conductivity,

�yy
sz ���. Expanding Eqs. �16� and �17� to leading order in

so /
F by assuming 
so /
F�1 for  and � different from
zero, the conventional part of the longitudinal �	=y� spin
conductivity takes the form

�yy
c,0���

− 9e/8�
=

1

3�1 +
�2�̃2 − 4
so

2

�
�

���
2 − �2�̃2�1/2

�� 2�2�̃2 + �
�

��

8�kF
6

 . �B1�

The spin-torque contribution reads

�yy
�,0���

9e/8�
= − 4

�yy
c,0���

9e/8�
−

4

3
H��� . �B2�

with the function H��� is defined as

H��� =
�2 − �2�

4� �1 −
�2�̃2 − 4
so

2

�
�

���
2 − �2�̃2�1/2

+

4��2�̃2��
�

�� + 2�2�̃2kF
6

�
�

���
2 − �2�̃2�3/2

. �B3�

Clearly, for the case of identical SOI coupling strengths �
=�� the function H��� vanishes at all frequencies and
�yy
�,0���=−4�yy

c,0���. It can be shown that using Eqs. �B1�,
�B2�, and �15� within the dc limit and for ultraclean
��→0+� samples, the static value of the longitudinal spin
conductivity will reduce to

�yy
sz �0� =�−

3e

8�

�


for 2 � �2

0 for  = �

3e

8�



�
for 2 � �2,� �B4�

which depends on the ratio  /�, as it occurs for a 2DEG.42
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